To Waffinity and Beyond: A Scalable Architecture for Incremental Parallelization of File System Code

نویسندگان

  • Matthew Curtis-Maury
  • Vinay Devadas
  • Vania Fang
  • Aditya Kulkarni
چکیده

In order to achieve higher I/O throughput and better overall system performance, it is necessary for commercial storage systems to fully exploit the increasing core counts on modern systems. At the same time, legacy systems with millions of lines of code cannot simply be rewritten for improved scalability. In this paper, we describe the evolution of the multiprocessor software architecture (MP model) employed by the Netapp R © Data ONTAP R © WAFL R © file system as a case study in incrementally scaling a production storage system. The initial model is based on small-scale data partitioning, whereby user-file reads and writes to disjoint file regions are parallelized. This model is then extended with hierarchical data partitioning to manage concurrent accesses to important file system objects, thus benefiting additional workloads. Finally, we discuss a finegrained lock-based MP model within the existing datapartitioned architecture to support workloads where data accesses do not map neatly to the predefined partitions. In these data partitioning and lock-based MP models, we have facilitated incremental advances in parallelism without a large-scale code rewrite, a major advantage in the multi-million line WAFL codebase. Our results show that we are able to increase CPU utilization by as much as 104% on a 20-core system, resulting in throughput gains of up to 130%. These results demonstrate the success of the proposed MP models in delivering scalable performance while balancing time-to-market requirements. The models presented can also inform scalable system redesign in other domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture

Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...

متن کامل

Architecture, implementation and parallelization of the software to search for periodic gravitational wave signals

The parallelization, design and scalability of the PolGrawAllSky code to search for periodic gravitational waves from rotating neutron stars is discussed. The code is based on an efficient implementation of the F -statistic using the Fast Fourier Transform algorithm. To perform an analysis of data from the advanced LIGO and Virgo gravitational wave detectors’ network, which will start operating...

متن کامل

Parallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach

There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...

متن کامل

The Scalable Modeling System: directive-based code parallelization for distributed and shared memory computers

A directive-based parallelization tool called the Scalable Modeling System (SMS) is described. The user inserts directives in the form of comments into existing Fortran code. SMS translates the code and directives into a parallel version that runs efficiently on shared and distributed memory high-performance computing platforms including the SGI Origin, IBM SP2, Cray T3E, Sun, and Alpha and Int...

متن کامل

Design of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems

Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016