To Waffinity and Beyond: A Scalable Architecture for Incremental Parallelization of File System Code
نویسندگان
چکیده
In order to achieve higher I/O throughput and better overall system performance, it is necessary for commercial storage systems to fully exploit the increasing core counts on modern systems. At the same time, legacy systems with millions of lines of code cannot simply be rewritten for improved scalability. In this paper, we describe the evolution of the multiprocessor software architecture (MP model) employed by the Netapp R © Data ONTAP R © WAFL R © file system as a case study in incrementally scaling a production storage system. The initial model is based on small-scale data partitioning, whereby user-file reads and writes to disjoint file regions are parallelized. This model is then extended with hierarchical data partitioning to manage concurrent accesses to important file system objects, thus benefiting additional workloads. Finally, we discuss a finegrained lock-based MP model within the existing datapartitioned architecture to support workloads where data accesses do not map neatly to the predefined partitions. In these data partitioning and lock-based MP models, we have facilitated incremental advances in parallelism without a large-scale code rewrite, a major advantage in the multi-million line WAFL codebase. Our results show that we are able to increase CPU utilization by as much as 104% on a 20-core system, resulting in throughput gains of up to 130%. These results demonstrate the success of the proposed MP models in delivering scalable performance while balancing time-to-market requirements. The models presented can also inform scalable system redesign in other domains.
منابع مشابه
Dynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture
Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...
متن کاملArchitecture, implementation and parallelization of the software to search for periodic gravitational wave signals
The parallelization, design and scalability of the PolGrawAllSky code to search for periodic gravitational waves from rotating neutron stars is discussed. The code is based on an efficient implementation of the F -statistic using the Fast Fourier Transform algorithm. To perform an analysis of data from the advanced LIGO and Virgo gravitational wave detectors’ network, which will start operating...
متن کاملParallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach
There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...
متن کاملThe Scalable Modeling System: directive-based code parallelization for distributed and shared memory computers
A directive-based parallelization tool called the Scalable Modeling System (SMS) is described. The user inserts directives in the form of comments into existing Fortran code. SMS translates the code and directives into a parallel version that runs efficiently on shared and distributed memory high-performance computing platforms including the SGI Origin, IBM SP2, Cray T3E, Sun, and Alpha and Int...
متن کاملDesign of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems
Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016